合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 熱毛細(xì)效應(yīng)引起的表面張力梯度導(dǎo)致傾斜壁面上液膜干斑的出現(xiàn)(三)
> 秦漢時(shí)期的物理學(xué)研究成果
> 微流控器件結(jié)構(gòu)對(duì)水/水微囊形成過程、界面張力的影響規(guī)律(二)
> W/O型Pickering乳液油水間的界面張力對(duì)乳液穩(wěn)定性的影響
> 日本在地下存了5萬噸純凈水?
> Na2CO3溶液與模擬油反應(yīng)不同時(shí)間后產(chǎn)物的界面張力、剪切黏度(一)
> 濃度、溫度、二價(jià)離子、礦化度等對(duì)無堿二元復(fù)合體系界面張力的影響
> 利用超微量天平制備微孔淀粉處理含Cu(II)離子染料廢水
> ?序列結(jié)構(gòu)決定性能:深度解析陽離子聚丙烯酸酯浮選劑的構(gòu)效關(guān)系及表征關(guān)鍵
> 人胰島素的朗繆爾單分子層膜的表面化學(xué)和光譜學(xué)性質(zhì)——實(shí)驗(yàn)部分
推薦新聞Info
-
> 嵌段比例對(duì)溫敏聚合物表面張力的影響及臨界膠束濃度分析(五)
> 嵌段比例對(duì)溫敏聚合物表面張力的影響及臨界膠束濃度分析(四)
> 利用表面張力優(yōu)化浮選工藝:調(diào)整劑AY在石英-膠磷礦分離中的活性調(diào)控(二)
> 利用表面張力優(yōu)化浮選工藝:調(diào)整劑AY在石英-膠磷礦分離中的活性調(diào)控(一)
> 嵌段比例對(duì)溫敏聚合物表面張力的影響及臨界膠束濃度分析(三)
> 嵌段比例對(duì)溫敏聚合物表面張力的影響及臨界膠束濃度分析(二)
> 嵌段比例對(duì)溫敏聚合物表面張力的影響及臨界膠束濃度分析(一)
> 溫度和碳碳雙鍵數(shù)對(duì)脂肪酸酯表面張力的影響(二)
> 溫度和碳碳雙鍵數(shù)對(duì)脂肪酸酯表面張力的影響(一)
> 二甲亞砜與二甲苯異構(gòu)體混合物的體積收縮與表面張力降低效應(yīng)(二)
新型助排劑配方組分、對(duì)表/界面性能的影響及助排效果(二)
來源:西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版) 瀏覽 696 次 發(fā)布時(shí)間:2025-06-27
2結(jié)果與討論
2.1助排劑組成
本研究的目的是獲得具有低表/界面張力且與巖石達(dá)到近似于中性潤濕的助排劑。首先,需要選擇表面活性劑。表面活性劑溶液達(dá)到臨界膠束濃度(cmc)后的表面張力(γcmc)是該表面活性劑溶液能夠獲得的最低表面張力。根據(jù)常見表面活性劑的γcmc數(shù)據(jù),氟表面活性劑能夠使水溶液達(dá)到更低的表面張力。因此,在新型助排劑中將選用合適的氟表面活性劑以降低溶液的表面張力。其次,選擇潤濕性改變劑。要達(dá)到與巖石接近中性潤濕,需要調(diào)節(jié)助排劑在巖石表面的吸附作用,以改變巖石表面的性質(zhì)使助排劑體系與巖石潤濕接觸角在75°~105°間(90°±15°)。此外,由于氟表面活性劑和潤濕性改變劑一般只能使油水界面張力降低到1 mN/m以上,因此要借鑒化學(xué)驅(qū)提高采收率中能夠與原油達(dá)到超低界面張力的表面活性劑的選擇方法,復(fù)配合適的碳?xì)浔砻婊钚詣┮垣@得能夠同時(shí)降低界面張力的助排劑體系。
圖1為3種氟表面活性劑的表面張力曲線。從圖1可以看出,隨著氟表面活性劑濃度的增加,溶液表面張力迅速下降,當(dāng)濃度達(dá)到臨界膠束濃度(cmc)后,隨著濃度的增加,表面張力趨于穩(wěn)定。3種氟表面活性劑FC-XF、FC-100和FC-H水溶液的cmc分別為0.001%、0.003%和0.005%,最低表面張力γcmc分別約為19、19.5和22.5 mN/m。因此,兩性氟表面活性劑FC-XF比2種非離子型氟表面活性劑具有更強(qiáng)的降低表面張力效率(低cmc)和能力(低γcmc),而且兩性型氟表面活性劑也不存在非離子型表面活性劑在更高溫度下氧乙烯基團(tuán)失去親水性而不溶于水的問題。因此選擇FC-XF作為助排劑中的氟表面活性劑。
圖1氟表面活性劑溶液的表面張力
圖2為Ⅱ型潤濕性改變劑質(zhì)量分?jǐn)?shù)與巖石的接觸角之間的關(guān)系。從圖2可以看出,隨著Ⅱ型潤濕性改變劑質(zhì)量分?jǐn)?shù)的增加,接觸角由55°逐漸增大,當(dāng)加入0.2%Ⅱ型潤濕性改變劑時(shí)接觸角可達(dá)到83°,繼續(xù)增加濃度接觸角略有減小,但都大于75°。
圖2Ⅱ型潤濕性改變劑質(zhì)量分?jǐn)?shù)與巖石接觸角關(guān)系曲線
圖3為典型的碳?xì)浔砻婊钚詣?潤濕性改變劑混合溶液與原油的動(dòng)態(tài)界面張力曲線。從圖3可以看出,0.1%C12CON+0.2%Ⅱ型潤濕性改變劑、0.1%GL6/SDS(混合質(zhì)量比為4∶1)+0.2%Ⅱ型潤濕性改變劑混合溶液與原油的界面張力分別為2.573 2 mN/m和0.063 5 mN/m,但0.1%APS+0.2%Ⅱ型潤濕性改變劑混合溶液與原油的界面張力可以達(dá)到0.024 6 mN/m。而且,0.1%APS+0.1%Ⅱ混合溶液與原油的界面張力也低于0.05 mN/m,0.1%APS+0.5%Ⅱ型潤濕性改變劑混合溶液與原油的界面張力甚至可以達(dá)到小于0.003 5 mN/m的超低界面張力。
圖3碳?xì)浔砻婊钚詣?潤濕性改變劑混合溶液與原油的動(dòng)態(tài)界面張力曲線
綜合上述研究結(jié)果,選擇氟表面活性劑FC-XF、Ⅱ型潤濕性改變劑和兩性表面活性劑APS復(fù)配制備高界面活性劑助排劑。
2.2助排劑配方確定
將不同質(zhì)量分?jǐn)?shù)的氟表面活性劑FC-XF、Ⅱ型潤濕性改變劑和兩性表面活性劑APS復(fù)配可以獲得不同的助排劑體系。各組分的含量不同,所獲得的助排劑溶液的表/界面張力和對(duì)巖石潤濕角不同。為了獲得最優(yōu)配方,實(shí)驗(yàn)考察了當(dāng)Ⅱ型潤濕性改變劑質(zhì)量分?jǐn)?shù)為0.2%,分別改變FC-XF和APS的質(zhì)量分?jǐn)?shù)時(shí)對(duì)助排劑體系表/界面張力和接觸角的影響。這不僅可以分析助排劑組分對(duì)表/界面性能的影響,而且有利于助排劑的配方優(yōu)化。
圖4為Ⅱ型潤濕性改變劑質(zhì)量分?jǐn)?shù)為0.2%,APS質(zhì)量分?jǐn)?shù)為0.1%時(shí)氟表面活性劑FC-XF濃度對(duì)體系表面張力、界面張力和接觸角的影響。
圖40.1%APS+0.2%Ⅱ型潤濕性改變劑+FC-XF混合體系表面張力、界面張力和接觸角隨FC-XF質(zhì)量分?jǐn)?shù)的變化
從圖4(a)中可以看出,隨著FC-XF質(zhì)量分?jǐn)?shù)由0.005%增加到0.050%,體系的表面張力由25.6 mN/m降低至20.8 mN/m,界面張力則由0.028 6 mN/m升高到0.212 3 mN/m。這是因?yàn)橹艅┲懈鹘M分在表/界面上發(fā)生協(xié)同和競爭吸附,F(xiàn)C-XF濃度增加使得表/界面中FC-XF的吸附量增加,因而降低表面張力的效率增加,同時(shí)使得降低界面張力組分的吸附量減小,因而界面張力升高。
從圖4(b)中可以看出,隨著FC-XF質(zhì)量分?jǐn)?shù)由0.005%增加到0.050%,混合體系與巖石的接觸角由87°降低至73°,γcosθ由1.3 mN/m上升到6.3 mN/m。這是由于吸附Ⅱ型潤濕性改變劑和APS使得巖石表面由水濕轉(zhuǎn)變?yōu)橹行詽櫇?接觸角>87°),更易于吸附FC-XF的碳氟鏈而使親水性頭基在巖石表面暴露,增加了巖石表面的親水性,因而隨著FC-XF質(zhì)量分?jǐn)?shù)的增加接觸角減小。





